Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum.

نویسنده

  • Vera A Golovina
چکیده

Unloading of endoplasmic reticulum (ER) Ca(2+) stores activates influx of extracellular Ca(2+) through 'store-operated' Ca(2+) channels (SOCs) in the plasma membrane (PM) of most cells, including astrocytes. A key unresolved issue concerning SOC function is their spatial relationship to ER Ca(2+) stores. Here, using high resolution imaging with the membrane-associated Ca(2+) indicator, FFP-18, it is shown that store-operated Ca(2+) entry (SOCE) in primary cultured mouse cortical astrocytes occurs at plasma membrane-ER junctions. In the absence of extracellular Ca(2+), depletion of ER Ca(2+) stores using cyclopiazonic acid, an ER Ca(2+)-ATPase inhibitor, and caffeine transiently increases the sub-plasma-membrane Ca(2+) concentration ([Ca(2+)](SPM)) within a restricted space between the plasma membrane and adjacent ER. Restoration of extracellular Ca(2+) causes localized Ca(2+) influx that first increases [Ca(2+)](SPM) in the same restricted regions and then, with a delay, in ER-free regions. Antisense knockdown of the TRPC1 gene, proposed to encode endogenous SOCs, markedly reduces SOCE measured with Fura-2. High resolution immunocytochemistry with anti-TRPC1 antibody reveals that these TRPC-encoded SOCs are confined to the PM microdomains adjacent to the underlying 'junctional' ER. Thus, Ca(2+) entry through TRPC-encoded SOCs is closely linked, not only functionally, but also structurally, to the ER Ca(2+) stores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes.

The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca(2+)) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluore...

متن کامل

STIM and ORAI proteins in the nervous system.

Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal com...

متن کامل

Regulation of store-operated calcium entry during cell division.

Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subuni...

متن کامل

Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry.

Store-operated Ca(2+) entry (SOCE) is established by formation of subplasmalemmal clusters of the endoplasmic reticulum (ER) protein, stromal interacting molecule 1 (STIM1) upon ER Ca(2+) depletion. Thereby, STIM1 couples to plasma membrane channels such as Orai1. Thus, a close proximity of ER domains to the plasma membrane is a prerequisite for SOCE activation, challenging the concept of local...

متن کامل

Orai1 and STIM reconstitute store-operated calcium channel function.

The two membrane proteins, STIM1 and Orai1, have each been shown to be essential for the activation of store-operated channels (SOC). Yet, how these proteins functionally interact is not known. Here, we reveal that STIM1 and Orai1 expressed together reconstitute functional SOCs. Expressed alone, Orai1 strongly reduces store-operated Ca(2+) entry (SOCE) in human embryonic kidney 293 cells and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 564 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005